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B-Turn conformation is one of the most important secondary
structures of peptides. This fundamental motif is, like other peptide

secondary structures, very unstable if a peptide exists as a short

fragment! The turn structure can be, in principle, constituted by
four amino acid residues via hydrogen bonding betwe®(i)aand
NH(i+3). In general, however;-turn conformation is stable in
water only if it is involved inj-hairpin structures consisting of
more than nine amino acid residifeslere, we observe that even

a three-residue peptide fragment, Ac-Ala-Ala-Ala-NHan be
folded into afS-turn® (which is also regarded as a minimaly3
helix) through encapsulation by a porphyrin-assembled synthetic
host. Despite the presence of only one intramolecular hydrogen
bond, the turn conformation is shown to be very stable because of
efficient host-guest interaction.

For the efficient accommodation of a short peptide fragment,
we employed prism-like porphyrin cagé that provides a large
hydrophobic binding pocket. This cage can be prepared by the self-
assembly of tetrakis(3-pyridyl)-substituted porphyrin and (en)Pd-
(NOs),. The target tripeptide, Ac-Ala-Ala-Ala-NH(2), contains
only Ala that is the simplest-substituted amino acid residue.

The complex1-2 was easily prepared by mixing the aqueous
solutions of both componentsl{[ = [2] = 2 mM) at room
temperature for a few minutes. Encapsulatio efithin the cavity
of 1 was confirmed by!H NMR analysis. Proton signals of
complexed2 were fully assigned from TOCSY and NOESY
experiments. All the signals @were considerably shifted upfield.

In particular, the I8 protons of Alal, Ala2, and Ala3 were observed
around—>5.0 ppm (Figure 1). This result suggested that all residues
of peptide2 were deeply encapsulated by the cavity1ofThe
association constant was estimated to be 10° M~1 by 'H NMR
competition experimerit.
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The turn conformation o2 was elucidated from a NOESY
experiment. NOE cross-peaks in NOESY were clearly observed
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Figure 1. *H NMR spectrum of complex-2 in D,O (500 MHz, 2 mM,
27 °C, TMS as external standard).

ppm

Figure 2. Selected NOESY spectrum (500 MHz,®/D,0 = 9/1, 27°C)
of 1 ([1] =2 mM) and2 ([2] = 2 mM). Interresidue NOEs are denoted as
letters in the spectrum and as arrows in the chemical structue of

between the N-terminal acetyl group and Ala3 protons (HN and
Hp), indicating the proximity of the N- and C-terminal ®{Figure
2). The turn structure d was also supported By¥nncre coupling
constants. AlBJyncha Values were below 6 Hz, characteristic of
helical or turn rather than random-coil conformatfon.
Furthermore, the turn structure was strongly suggested by
molecular dynamics (MD) simulation with the CNS prograimat
was run under restraints of NOE distances (11 intraresidue, 7
sequential, 5 medium range) and 3 backbgragles fron?IyncHo
values. Among randomly generated 50 initial structures, 48 of them
were converged, with low backbone pairwise RMSD (0.09 A), into
almost identical lowest-energy structures that clearly showed the
turn conformation (Figure 3). The MD calculation also suggested
a hydrogen bond between the N-terminal acetyl group and NH of
Ala3. This turn structure is a minimali@helix and is also
categorized as A-turn conformatior?.
We confirmed that the MD-minimized structure fits the cavity
of 1. The crystal structure df* and the MD-optimized structure of
2 were combined so th& was fully accommodated in the cavity
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Figure 3. Superposition of the 48 lowest-energy structures by Ce8s
bound peptide2.

Figure 4. Refined structures of (a) complek2 and (b) complexi-9
obtained after combining the crystal structureland the MD-minimized
structures o and9, respectively.

of 1. When the combined structure was refirfetie conformation
of 2 remained almost unchanged, suggesting that hgsbvides
an ideal cavity for recognizing the most stable conformatio2 of
(Figure 4a). For comparison, tripeptidén an extended conforma-
tion was also refined in the cavity df but efficient hostguest
interactions were hardly observed.

In the refinedl1-2 structure, the methyl groups of Ala residues
and the porphyrin ligands showed efficient €t contact, which
presumably induces the folding &finto the5-turn conformation.

In particular, the CHx contact of Ala2 seems to be the most
important because the association constardtwith a singly Gly-
mutated tripeptide, Ac-Al&Gly-Ala-NH, (3), was considerably
reduced (9x 10° M~1). Other Gly-mutated tripeptides, ABly-
Ala-Ala-NH; (4) and Ac-Ala-AlaGly-NH, (5), did not show
significant decrease in association constants (B® and 1x 10°
M~ for 4 and5, respectively. Binding was no longer observed
for Ac-Gly-Gly-Gly-NH; (6) because of the absence of the €l
contact. Tripeptides, Ac-Val-Val-Val-NH(7) and Ac-Leu-Leu-
Leu-NH, (8), were also not bound at all because they are too bulky
to be fit in the cavity ofl.

Particularly interesting is that, through hesjuest interaction
with 1, a stables-hairpin-like structure is generated from a longer
oligopeptide involving Ala-Ala-Ala sequence at the middle. When
a heptapeptide, Ac-Gly-Gly-Ala-Ala-Ala-Gly-Gly-NH(9), was
treated with a molar equivalent dfin water, significant upfield
shifts of proton signals were observed only around the Ala-Ala-
Ala region A6 = —6.2,—6.5, and—5.5 ppm for the methyl groups
of Ala3, Ala4, and Ala5, respectively). The methylene groups of
adjacent Gly2 and Gly6 were also shifted upfiei)(= —6.2 and

—6.9 ppm for Gly2;—4.2 and—5.1 ppm for Gly6), while terminal
Ac-Glyl and Gly7-NH protons were hardly shielded. The associa-
tion constant was 8« 10* M~15 MD simulation under NOE
distance restraints followed by force-field optimizafiotiearly
indicated g8-hairpin-like structure with the turn conformation at
the Ala-Ala-Ala region, which should be deeply accommodated in
the cavity of1 (Figure 4b)!°

In summary, self-assembled porphyrin cdgdhowed remarkable
ability to fold Ala-Ala-Ala sequence int8-turn via encapsulation.
The result demonstrated that peptide recognition within the large
cavity of self-assembled cadés?is a powerful method to produce
the secondary structures of peptides even if the peptide fragment
is considerably short. Folding relatively long peptide fragments into
protein partial structures showing a protein’s native activities is
the ultimate goal of the present study.

Supporting Information Available: Experimental procedures,
physical properties, NMR assignments, MD calculations, and binding
studies (PDF). This material is available free of charge via the Internet
at http://pubs.acs.org.
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